H(t)=16t^2+65t+5

Simple and best practice solution for H(t)=16t^2+65t+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=16t^2+65t+5 equation:



(H)=16H^2+65H+5
We move all terms to the left:
(H)-(16H^2+65H+5)=0
We get rid of parentheses
-16H^2+H-65H-5=0
We add all the numbers together, and all the variables
-16H^2-64H-5=0
a = -16; b = -64; c = -5;
Δ = b2-4ac
Δ = -642-4·(-16)·(-5)
Δ = 3776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3776}=\sqrt{64*59}=\sqrt{64}*\sqrt{59}=8\sqrt{59}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-8\sqrt{59}}{2*-16}=\frac{64-8\sqrt{59}}{-32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+8\sqrt{59}}{2*-16}=\frac{64+8\sqrt{59}}{-32} $

See similar equations:

| X2=30+x | | 2x-1/x+1=x+1/x-2 | | 4y+3=47 | | 0.15(10,000)-0.06y=0.04(y+10,000) | | (x+5)x2+(x+3)=5 | | (x+52)+(x+3)=5 | | 3,8-2x-2x=-1 | | 2q/5+1=15 | | (x+5)2+(x+3)=5 | | -2(4s-1)-2=-2(9s+9)-2 | | 4z/10-3=8 | | 5-x=2(2x-7) | | 10−g=4g | | 6x-10+8x=5(4x-3)+2 | | x=276 | | -2v=-v−7 | | 3x+2(x-9)=8x+1x-14 | | 8q=7+7q | | 5-x/2=2x-7 | | 2x-17*7=50 | | 5f=4f+5 | | -6h=3h+9 | | -18=5u+7 | | 5x-5=7-6x | | 567=9(-6x+15) | | 2x+4=2(x-6) | | 8x+3-10x=-2(x-2)+2 | | M2+4m+15=12 | | 0.75x+1=13 | | 0.8x-11=0.3x+3 | | 6-2/3(x+5)=4x | | 44=6x-5 |

Equations solver categories